
Engineering at Anthropic

Effective harnesses for long-running agents

Agents still face challenges working across many context windows.

We looked to human engineers for inspiration in creating a more

effective harness for long-running agents.

Published Nov 26, 2025

As AI agents become more capable, developers are increasingly asking them to take on

complex tasks requiring work that spans hours, or even days. However, getting agents

to make consistent progress across multiple context windows remains an open

problem.

The core challenge of long-running agents is that they must work in discrete sessions,

and each new session begins with no memory of what came before. Imagine a software

project staffed by engineers working in shifts, where each new engineer arrives with no

memory of what happened on the previous shift. Because context windows are limited,

and because most complex projects cannot be completed within a single window,

agents need a way to bridge the gap between coding sessions.

We developed a two-fold solution to enable the Claude Agent SDK to work effectively

across many context windows: an initializer agent that sets up the environment on the

https://www.anthropic.com/engineering
https://platform.claude.com/docs/en/agent-sdk/overview
https://www.anthropic.com/

first run, and a coding agent that is tasked with making incremental progress in every

session, while leaving clear artifacts for the next session. You can find code examples in

the accompanying quickstart.

The long-running agent problem

The Claude Agent SDK is a powerful, general-purpose agent harness adept at coding, as

well as other tasks that require the model to use tools to gather context, plan, and

execute. It has context management capabilities such as compaction, which enables an

agent to work on a task without exhausting the context window. Theoretically, given

this setup, it should be possible for an agent to continue to do useful work for an

arbitrarily long time.

However, compaction isn’t sufficient. Out of the box, even a frontier coding model like

Opus 4.5 running on the Claude Agent SDK in a loop across multiple context windows

will fall short of building a production-quality web app if it’s only given a high-level

prompt, such as “build a clone of claude.ai.”

Claude’s failures manifested in two patterns. First, the agent tended to try to do too

much at once—essentially to attempt to one-shot the app. Often, this led to the model

running out of context in the middle of its implementation, leaving the next session to

start with a feature half-implemented and undocumented. The agent would then have

to guess at what had happened, and spend substantial time trying to get the basic app

working again. This happens even with compaction, which doesn’t always pass

perfectly clear instructions to the next agent.

A second failure mode would often occur later in a project. After some features had

already been built, a later agent instance would look around, see that progress had been

made, and declare the job done.

This decomposes the problem into two parts. First, we need to set up an initial

environment that lays the foundation for all the features that a given prompt requires,

which sets up the agent to work step-by-step and feature-by-feature. Second, we

should prompt each agent to make incremental progress towards its goal while also

leaving the environment in a clean state at the end of a session. By “clean state” we

mean the kind of code that would be appropriate for merging to a main branch: there

are no major bugs, the code is orderly and well-documented, and in general, a developer

could easily begin work on a new feature without first having to clean up an unrelated

mess.

When experimenting internally, we addressed these problems using a two-part

solution:

https://github.com/anthropics/claude-quickstarts/tree/main/autonomous-coding
http://claude.ai/redirect/website.v1.fdd9439d-7287-48ca-8a89-4f2255b77e0c

1. Initializer agent: The very first agent session uses a specialized prompt that asks the

model to set up the initial environment: an init.sh script, a claude-progress.txt

file that keeps a log of what agents have done, and an initial git commit that shows

what files were added.

2. Coding agent: Every subsequent session asks the model to make incremental

progress, then leave structured updates.1

The key insight here was finding a way for agents to quickly understand the state of

work when starting with a fresh context window, which is accomplished with the

claude-progress.txt file alongside the git history. Inspiration for these practices came

from knowing what effective software engineers do every day.

Environment management

In the updated Claude 4 prompting guide, we shared some best practices for multi-

context window workflows, including a harness structure that uses “a different prompt

for the very first context window.” This “different prompt” requests that the initializer

agent set up the environment with all the necessary context that future coding agents

will need to work effectively. Here, we provide a deeper dive on some of the key

components of such an environment.

Feature list

To address the problem of the agent one-shotting an app or prematurely considering

the project complete, we prompted the initializer agent to write a comprehensive file of

feature requirements expanding on the user’s initial prompt. In the claude.ai clone

example, this meant over 200 features, such as “a user can open a new chat, type in a

query, press enter, and see an AI response.” These features were all initially marked as

“failing” so that later coding agents would have a clear outline of what full functionality

looked like.

{

"category": "functional",

"description": "New chat button creates a fresh conversation",

"steps": [

"Navigate to main interface",

"Click the 'New Chat' button",

"Verify a new conversation is created",

"Check that chat area shows welcome state",

"Verify conversation appears in sidebar"

],

"passes": false

}

https://docs.claude.com/en/docs/build-with-claude/prompt-engineering/claude-4-best-practices#multi-context-window-workflows
http://claude.ai/redirect/website.v1.fdd9439d-7287-48ca-8a89-4f2255b77e0c

We prompt coding agents to edit this file only by changing the status of a passes field,

and we use strongly-worded instructions like “It is unacceptable to remove or edit tests

because this could lead to missing or buggy functionality.” After some experimentation,

we landed on using JSON for this, as the model is less likely to inappropriately change

or overwrite JSON files compared to Markdown files.

Incremental progress

Given this initial environment scaffolding, the next iteration of the coding agent was

then asked to work on only one feature at a time. This incremental approach turned out

to be critical to addressing the agent’s tendency to do too much at once.

Once working incrementally, it’s still essential that the model leaves the environment in

a clean state after making a code change. In our experiments, we found that the best

way to elicit this behavior was to ask the model to commit its progress to git with

descriptive commit messages and to write summaries of its progress in a progress file.

This allowed the model to use git to revert bad code changes and recover working states

of the code base.

These approaches also increased efficiency, as they eliminated the need for an agent to

have to guess at what had happened and spend its time trying to get the basic app

working again.

Testing

One final major failure mode that we observed was Claude’s tendency to mark a feature

as complete without proper testing. Absent explicit prompting, Claude tended to make

code changes, and even do testing with unit tests or curl commands against a

development server, but would fail recognize that the feature didn’t work end-to-end.

In the case of building a web app, Claude mostly did well at verifying features end-to-

end once explicitly prompted to use browser automation tools and do all testing as a

human user would.

Copy

Screenshots taken by Claude through the Puppeteer MCP server as it tested the claude.ai
clone.

Providing Claude with these kinds of testing tools dramatically improved performance,

as the agent was able to identify and fix bugs that weren’t obvious from the code alone.

Some issues remain, like limitations to Claude’s vision and to browser automation tools

making it difficult to identify every kind of bug. For example, Claude can’t see browser-

native alert modals through the Puppeteer MCP, and features relying on these modals

tended to be buggier as a result.

Getting up to speed

With all of the above in place, every coding agent is prompted to run through a series of

steps to get its bearings, some quite basic but still helpful:

1. Run pwd to see the directory you’re working in. You’ll only be able to edit files in this

directory.

2. Read the git logs and progress files to get up to speed on what was recently worked

on.

3. Read the features list file and choose the highest-priority feature that’s not yet done to

work on.

This approach saves Claude some tokens in every session since it doesn’t have to figure

out how to test the code. It also helps to ask the initializer agent to write an init.sh script

that can run the development server, and then run through a basic end-to-end test

before implementing a new feature.

In the case of the claude.ai clone, this meant that the agent always started the local

development server and used the Puppeteer MCP to start a new chat, send a message,

and receive a response. This ensured that Claude could quickly identify if the app had

been left in a broken state, and immediately fix any existing bugs. If the agent had

instead started implementing a new feature, it would likely make the problem worse.

Given all this, a typical session starts off with the following assistant messages:

[Assistant] I'll start by getting my bearings and understanding the

current state of the project.

[Tool Use] <bash - pwd>

[Tool Use] <read - claude-progress.txt>

[Tool Use] <read - feature_list.json>

[Assistant] Let me check the git log to see recent work.

[Tool Use] <bash - git log --oneline -20>

[Assistant] Now let me check if there's an init.sh script to

restart the servers.

<Starts the development server>

[Assistant] Excellent! Now let me navigate to the application and

verify that some fundamental features are still working.

<Tests basic functionality>

[Assistant] Based on my verification testing, I can see that the

fundamental functionality is working well. The core chat features,

theme switching, conversation loading, and error handling are all

functioning correctly. Now let me review the tests.json file more

comprehensively to understand what needs to be implemented next.

<Starts work on a new feature>

Agent failure modes and solutions

Problem

Initializer Agent Behavior

Coding Agent Behavior

Claude declares victory on the entire project too early.

Set up a feature list file: based on the input spec, set up a

structured JSON file with a list of end-to-end feature descriptions.

Read the feature list file at the beginning of a

session. Choose a single feature to start working on.

Copy

Claude leaves the environment in a state with bugs or undocumented progress.

An initial git repo and progress notes file is written.

Start the session by reading the progress notes file and git commit logs,

and run a basic test on the development server to catch any undocumented

bugs. End the session by writing a git commit and progress update.

Claude marks features as done prematurely.

Set up a feature list file.

Self-verify all features. Only mark features as “passing” after careful testing.

Claude has to spend time figuring out how to run the app.

Write an init.sh script that can run the development server.

Start the session by reading init.sh .

Summarizing four common failure modes and solutions in long-running AI agents.

Future work

This research demonstrates one possible set of solutions in a long-running agent

harness to enable the model to make incremental progress across many context

windows. However, there remain open questions.

Most notably, it’s still unclear whether a single, general-purpose coding agent performs

best across contexts, or if better performance can be achieved through a multi-agent

architecture. It seems reasonable that specialized agents like a testing agent, a quality

assurance agent, or a code cleanup agent, could do an even better job at sub-tasks

across the software development lifecycle.

Additionally, this demo is optimized for full-stack web app development. A future

direction is to generalize these findings to other fields. It’s likely that some or all of these

lessons can be applied to the types of long-running agentic tasks required in, for

example, scientific research or financial modeling.

Acknowledgements

Written by Justin Young. Special thanks to David Hershey, Prithvi Rajasakeran, Jeremy

Hadfield, Naia Bouscal, Michael Tingley, Jesse Mu, Jake Eaton, Marius Buleandara,

Maggie Vo, Pedram Navid, Nadine Yasser, and Alex Notov for their contributions.

This work reflects the collective efforts of several teams across Anthropic who made it

possible for Claude to safely do long-horizon autonomous software engineering,

especially the code RL & Claude Code teams. Interested candidates who would like to

contribute are welcome to apply at anthropic.com/careers.

http://anthropic.com/careers

Footnotes

1. We refer to these as separate agents in this context only because they have different initial user

prompts. The system prompt, set of tools, and overall agent harness was otherwise identical.

Get the developer newsletter

Product updates, how-tos, community spotlights, and more.

Delivered monthly to your inbox.

Enter your email

Please provide your email address if you’d like to receive our monthly developer

newsletter. You can unsubscribe at any time.

Products

Claude

Claude Code

Cowork

Claude in Chrome

Claude in Excel

Claude in Slack

Skills

Max plan

Team plan

Enterprise plan

Download app

Pricing

Log in to Claude

Models

https://www.anthropic.com/
https://www.anthropic.com/
https://claude.com/product/overview
https://claude.com/product/claude-code
https://claude.com/product/cowork
https://claude.com/chrome
https://claude.com/claude-in-excel
https://claude.com/claude-in-slack
https://www.claude.com/skills
https://claude.com/pricing/max
https://claude.com/pricing/team
https://claude.com/pricing/enterprise
https://claude.ai/download
https://claude.com/pricing
https://claude.ai/

Opus

Sonnet

Haiku

Solutions

AI agents

Code modernization

Coding

Customer support

Education

Financial services

Government

Healthcare

Life sciences

Nonprofits

Claude Developer Platform

Overview

Developer docs

Pricing

Regional Compliance

Amazon Bedrock

Google Cloud’s Vertex AI

Console login

Learn

Blog

Claude partner network

Connectors

https://www.anthropic.com/claude/opus
https://www.anthropic.com/claude/sonnet
https://www.anthropic.com/claude/haiku
https://claude.com/solutions/agents
https://claude.com/solutions/code-modernization
https://claude.com/solutions/coding
https://claude.com/solutions/customer-support
https://claude.com/solutions/education
https://claude.com/solutions/financial-services
https://claude.com/solutions/government
https://claude.com/solutions/healthcare
https://claude.com/solutions/life-sciences
https://claude.com/solutions/nonprofits
https://claude.com/platform/api
https://platform.claude.com/docs
https://claude.com/pricing#api
https://claude.com/regional-compliance
https://claude.com/partners/amazon-bedrock
https://claude.com/partners/google-cloud-vertex-ai
https://platform.claude.com/
https://claude.com/blog
https://claude.com/partners
https://claude.com/connectors

Courses

Customer stories

Engineering at Anthropic

Events

Powered by Claude

Service partners

Startups program

Tutorials

Use cases

Company

Anthropic

Careers

Economic Futures

Research

News

Claude’s Constitution

Responsible Scaling Policy

Security and compliance

Transparency

Help and security

Availability

Status

Support center

Terms and policies

Privacy choices

Privacy policy

https://www.anthropic.com/learn
https://claude.com/customers
https://www.anthropic.com/engineering
https://www.anthropic.com/events
https://claude.com/partners/powered-by-claude
https://claude.com/partners/services
https://claude.com/programs/startups
https://claude.com/resources/tutorials
https://claude.com/resources/use-cases
https://www.anthropic.com/company
https://www.anthropic.com/careers
https://www.anthropic.com/economic-index
https://www.anthropic.com/research
https://www.anthropic.com/news
https://www.anthropic.com/constitution
https://www.anthropic.com/news/announcing-our-updated-responsible-scaling-policy
https://trust.anthropic.com/
https://www.anthropic.com/transparency
https://www.anthropic.com/supported-countries
https://status.anthropic.com/
https://support.claude.com/en/
https://www.anthropic.com/legal/privacy

Consumer health data privacy policy

Responsible disclosure policy

Terms of service: Commercial

Terms of service: Consumer

Usage policy

© 2025 Anthropic PBC

https://www.anthropic.com/legal/consumer-health-data-privacy-policy
https://www.anthropic.com/responsible-disclosure-policy
https://www.anthropic.com/legal/commercial-terms
https://www.anthropic.com/legal/consumer-terms
https://www.anthropic.com/legal/aup
https://www.linkedin.com/company/anthropicresearch
https://www.linkedin.com/company/anthropicresearch
https://x.com/AnthropicAI
https://x.com/AnthropicAI
https://www.youtube.com/@anthropic-ai
https://www.youtube.com/@anthropic-ai

