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At LinkedIn, our mission is to connect professionals to opportunity. Search
plays a central role in this by helping members discover jobs, people, and
knowledge that move their careers forward. As the professional landscape
evolves, we strive to deliver search experiences that feel relevant, intuitive,
personalized, and predictive of what truly matters, from applying to the right job
to forming the right connection. That’s why we’ve recently introduced AI Job
Search and AI-powered People Search, which go beyond keyword
matching and better understand member intent.

These products reimagine LinkedIn search, using large language models (LLMs)
to create a semantic search experience. Instead of relying on exact word overlap
between queries and postings, it interprets natural language to infer user goals
and preferences. This semantic representation allows for more flexible and
accurate retrieval, overcoming vocabulary gaps and aligning search results with
how members naturally express their career ambitions.
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Deploying LLMs at LinkedIn’s scale—serving millions of real-time queries per
second—requires innovation that balances quality and efficiency. In this blog,
we’ll share how we transformed our overarching search experience at LinkedIn,
including the challenges and decisions that went into creating a scalable LLM-
based stack and how the technology is powering a smarter, faster, and more
personalized experience that helps every member find the most relevant
opportunities and connections.

Semantic search’s high level infrastructure
When a member submits a query in the search bar, a query understanding
module processes the input text, creates a query embedding, and performs
embedding-based retrieval (EBR) on CUDA-enabled GPUs using exhaustive
vector search (paper on GPU CUDA-based Search, paper on GPU
PyTorch-based Search) to assemble a broad set of candidate documents. The
ranking stage then refines these candidates through a Cross-Encoder Small
Language Model (SLM) deployed on SGLang, which combines the query, job,
and member features to generate relevance and engagement scores for final
ranking.

To maintain scalability and efficiency, the ranking pipeline integrates several
optimization techniques (paper on efficient LLM inference
infrastructure, context compression paper): score caching, a ranking-
depth controller to manage how many candidates progress to deeper ranking,
and traffic shaping to balance load during peak times—all designed to enhance
latency and result quality. The features and concise job representations
consumed by the SLM are produced through a hybrid inference pipeline: a
large-scale offline workflow using Spark and Flyte, and a low-latency nearline
system using Flink. These embeddings and summaries are stored in distributed
storage and retrieved on demand with minimal latency.

In the final stage, the auction layer applies budget and pacing strategies to
balance user relevance, engagement, and business metrics, ensuring a healthy

Engineering Blog

https://dl.acm.org/doi/10.1145/3705328.3748116
https://arxiv.org/pdf/2407.13218
https://arxiv.org/pdf/2407.13218
https://www.arxiv.org/pdf/2510.22101
https://www.arxiv.org/pdf/2510.22101
https://arxiv.org/abs/2512.07846
https://www.linkedin.com/blog/engineering


equilibrium between recall and precision while maximizing member
satisfaction. Figure 1 below provides an overview of the system architecture.

Figure 1. Overall pipeline of LinkedIn’s semantic search

Product policy relevance measurement
Measuring relevance quality is essential to delivering a great search experience
on LinkedIn. We define product policies that specify how to rate each query–
document pair on a five-point scale and use LLM judges to apply these ratings at
a massive scale, far beyond what manual evaluation can achieve. These judges
are tightly aligned with product managers and engineers through iterative
feedback to ensure high agreement. They not only grade tens of millions of
query–document pairs daily for relevance measurement but also generate
labeled data for training our retrieval and ranking systems, ensuring we
optimize search quality according to product policy.

Defining product policy and golden product manager grades

A strong LLM judge begins with a clear product policy and high-quality product
manager “golden” grades that demonstrate how that policy should be applied.
Product managers act as a “Supreme Court,” regularly calibrating to resolve
judgment differences and maintain a shared definition of what constitutes a
good query–document match. These discussions refine the policy, making it
clearer and less subjective. Once product managers reach high agreement
(weighted Cohen’s Kappa ≥ 0.8), their labels are considered reliable ground
truth.

To build a comprehensive golden dataset across diverse user queries, we first
categorize queries by attributes (e.g., title–company, name–company, title–
skill). Each category is then split into existing user queries and aspirational
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queries that represent strategic areas we want to excel in. We stratify-sample
query–document pairs from each bucket to ensure broad coverage before
sending them to product managers for grading.

Training the LLM judge 

Our LLM judge must meet two requirements: high agreement with product
managers and the ability to grade tens of millions of query–document pairs
daily. To maximize agreement, we collaborate with product managers to
prompt-engineer state-of-the-art LLMs, optimizing the weighted Cohen’s Kappa
Score on golden data. The prompt encodes product-policy guidelines and few-
shot examples to drive consistency. While these large models produce high-
quality judgments, they cannot meet our throughput needs. To scale, we distill
them into a smaller 8B-parameter evaluator LLM. Through supervised fine-
tuning on a diverse dataset spanning all query categories and grades, we
maintain only small drops in agreement—verified via the Kappa Score on the
golden set—while achieving massive efficiency gains.

Continuously measuring quality of search system

Once we have our scalable LLM judge, we can finally build continuous relevance
measurement of our system. On a regular basis, we build workflows that
perform the following steps:

1. Stratify sample or synthesize a diverse set of queries based on the query
categories defined earlier

2. Retrieve the documents returned from executing those queries

3. Decorate documents with additional information required for the
correct evaluation/judgement

4. Grade the documents returned using our LLM judge

5. Calculate aggregate precision, recall, and NDCG metrics
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Figure 2. Flow of the evaluation process

This workflow serves three primary functions:

Continuously monitoring the relevance of the overall system

Evaluating experiments involving underlying ranking and retrieval
subsystems

Distilling student ranking and retrieval models by leveraging evaluation
results

Search quality modeling
Search quality is a fundamental requirement for any search product, and
achieving it depends on building the core components of a modern search
engine. Below, we describe how we leveraged LLMs to enable query
understanding, semantic embedding–based retrieval, and cross-encoder
ranking.

Embedding-based retrieval

Retrieval is the stage of a search system that identifies a broad set of potentially
relevant results from a large corpus. Because no search engine can score every
document for every query in real time, we need an efficient retrieval layer to
narrow the search space before ranking. Our retrieval sits on top of our GPU-
enabled embedding-based retrieval (EBR) system. We built the EBR model by
fine-tuning an open-source LLM embedding model to encode queries and jobs
into dense vectors. We train on millions of real query–job pairs sampled from
production logs, with relevance labels provided by an LLM-based judge. Each
query includes its natural language text and query-understanding tags (e.g.
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workplace type or company), and each job is represented by structured
metadata (title, company) plus its description. Importantly, this work also
demonstrates a practical path for deploying LLM-based components in real
production search systems. The semantic search can directly understand human
language as queries, enabling much more intuitive search experiences. This has
been a particularly inspiring aspect of the project: bringing modern LLM
capabilities into a high-scale, real-time application that serves millions of users.

EBR relevance modeling

To ensure consistency between training and serving, every query is formatted
using a lightweight prompt template:

          
Instruct: Given a job search query, retrieve relevant job postings
Query: {query}
{Optional Aspect eg. Company}: {company}

The model uses a dual-tower (bi-encoder) architecture: one encoder maps
queries to embeddings and the other maps jobs, projecting them into a shared
semantic space. Training is end-to-end: we fine-tune all model parameters using
Hugging Face Accelerate (with PyTorch FSDP) across multiple GPUs.

We optimize a contrastive InfoNCE loss combined with a margin-based ranking
loss. For example, given a query q, a positive job d+, and negatives {d-k}, we
define:

where sim(·, ·) is the dot-product similarity of embeddings and τ is a
temperature parameter. We also enhance training with hard positives and hard
negatives mined from LLM-judged data. Hard positives are LLM-labeled
relevant jobs that the current EBR model ranks low, and hard negatives are non-
relevant jobs that the model ranks high. These examples reveal exactly where
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the model struggles. We then build targeted positive–negative pairs. A pairwise
margin loss is applied to these curated cases to explicitly lift hard positives and
suppress hard negatives, improving ranking where it matters most:

which encourages sim(q,d+) to exceed sim(q,d-) by a margin γ. The total loss is
a weighted sum, e.g.:

combining the benefits of contrastive and pairwise ranking.

We use multiple evaluation pipelines. First, we leverage production logs for
counterfactual evaluation: re-ranking the historical candidate list for each query
and computing precision, recall and NDCG against true labels. Second, we run
offline KNN simulations: we embed held-out queries and job corpus, retrieve
nearest neighbors, and directly measure retrieval metrics on this test set.
Finally, we integrate the new model into our online serving stack on a subset of
traffic to collect end-to-end metrics. These offline metrics provide quick
feedback, and the counterfactual log analysis helps estimate the model’s user
impact without a full live experiment.

Productionization of retrieval

In production, we precompute and store all job embeddings in GPU-backed
indexes. At runtime, the incoming query is encoded by the LLM with the prompt
aligned with the LLM pre-training to produce its embedding. We then perform
an exhaustive k-nearest-neighbor search over the job embedding index using
dot-product similarity, returning the top‑K jobs. This offline indexing and fast
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online query encoding makes retrieval extremely efficient, enabling low-latency
serving of industry-scale semantic search products.

Query understanding

At the moment a member enters a query into the search bar—the entry point of
semantic search—we apply a unified LLM-based understanding layer that
interprets intent and converts free text into structured signals. For both AI Job
Search and AI-powered People Search, this layer uses fine-tuned 1.5–4B
parameter models that meet LinkedIn’s latency requirements while delivering
high-precision structured outputs (paper). A single model handles intent
classification, facet extraction, and profile-aware rewriting, replacing multiple
brittle NER and heuristic components. The resulting attributes (e.g., title,
company, school, location) feed directly into retrieval and ranking.

An intelligent routing layer works alongside this. A lightweight encoder
classifies query types at high QPS and performs policy-based safety checks
before sending the query down the appropriate path—LLM-powered semantic
interpretation for ambiguous inputs or efficient keyword retrieval for precise
name and entity lookups.

Together, these components provide a consistent, centrally governed semantic
interface for People and Job Search, boosting relevance, simplifying the system,
and enabling Semantic Search to scale across LinkedIn’s global traffic.

Small language model ranking

The ranking module of semantic search utilizes a Small Language Model (SLM)
to estimate how relevant a user’s search query q is to each retrieved job_i. The
SLM follows a decoder-only architecture. For example, for job search we
represent the structured attributes of a job — including its title, company,
location, employment type, and remote-work status. Meanwhile people search
uses information from the member’s profile including their name, company
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information, position information, educational information and location. For
each query–job pair (q,i), we build a structured prompt defined as

Here, the system prefix and suffix contain chat-template tags and explicit
instructions guiding the model to determine whether the given job matches the
query. When this prompt is passed through the decoder, it produces logits
corresponding to the next token. Let logityes and logitno represent the logits for

the tokens “yes” and “no,” respectively. Following prior studies, we compute:

which yields probabilities used to rank job items by their relevance to the user’s
query.

SLM training pipeline for relevance quality

Training of the SLM follows a multi-stage process. First, we distill the 7B-
parameter teacher model into a compact 0.6B model that can generate graded
relevance labels along with rationales. Next, the teacher’s ordinal grades are
converted into “soft labels” (pyes,pno), representing probabilistic supervision.

We then perform supervised fine-tuning (SFT) to minimize the Kullback–
Leibler (KL) divergence between the teacher’s soft targets and the SLM’s
predicted probabilities—effectively converting the reasoning-oriented model
into a binary relevance classifier:
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We construct training labels by sampling real query–item pairs from user
interaction logs and annotating them using a full-scale Large Language Model
(LLM). Each pair is evaluated through a structured prompt of the following
format:

          
[CRITERIA]: <matching guidelines>  
[EXAMPLES]: <reasoning and output format>  
[QUERY]: <query text>  
[CANDIDATE]: <item text>
Analyze the query–candidate pair and assess how well they align.Provide a single matching score 
(0, 1, 2, 3, or 4) along with a brief explanation of your reasoning.

The LLM’s response includes both a graded relevance score and an
accompanying rationale, ensuring that the generated labels are interpretable
and consistent with the defined matching criteria.

The model is trained on logged pairs query–job pairs for up to five epochs using
the prompt structure. Since job descriptions dominate the input and vary
substantially in length (median ≈ 900 tokens; maximum > 2300), we truncate
them to ensure the total prompt length does not exceed 2048 tokens during
both training and inference. For evaluation, we use a holdout dataset labeled by
the teacher model. The SLM ranks job candidates based on pyes,pno, and system

performance is measured using Normalized Discounted Cumulative Gain at
rank 10 (NDCG@10).

Training for multiple objectives
We extend the training paradigm to predict both relevance and engagement
within the model, we train a smaller cross-encoder language model (the SLM)
using multi-teacher, multi-task distillation. The teachers include:

The product policy LLM for relevance scoring.
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Other large models that predict member actions—such as job views,
applies, recruiter accepts, or (in people search) view profile, connecting,
messaging, or following.

For training at scale, we use multiple 1.7B teacher models. To make this feasible,
we first distilled our 7B product policy model into a smaller 1.7B version, which
serves as a strong but efficient teacher alongside others. During the training
process, these teachers run in real time on sampled production query–
document pairs, producing soft probability scores that act as supervision
targets. The student SLM is trained with KL divergence loss to align its output
distribution with the ensemble of teachers. This setup lets us train on real-world
data at scale: teacher models provide rich, nuanced probability signals, and the
distilled student captures much of their reasoning capacity while remaining
lightweight enough to serve millions of queries per second in production.

We have multiple steps of distillation to SLM described in Figure 3, and we
show the metrics after distillation in Table 1.

Figure 3. Multi-teacher distillation of SLM

 





  NDCG@10 Apply AUC Click AUC

Relevance Teacher 1.7B 0.9484 - -

Engagement Teacher 1.7B - 0.8049 0.6772

SLM 0.6B (distilled) 0.9239 0.8007 0.6704

Explainability in search
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To make LinkedIn’s AI-powered People Search more transparent, we introduced
semantic, context-aware snippets that show why a result matches a member’s
query. Snippets highlight the most relevant terms and maintain low latency
through lazy loading, caching. The approach uses semantic similarity between
the query embedding and precomputed phrase embeddings (unigrams/bigrams)
from profile text, surfacing the highest-scoring phrases as natural, human-
readable snippets. In the offline pipeline, we extract phrases from each profile
section (e.g., summary, experience, education), encode them into embeddings in
a Venice key-value store. This index is refreshed periodically to capture
profile updates, with evaluation workflows ensuring quality and readability. At
search time, the snippetting midtier receives the query embedding and
candidate profiles, fetches stored phrase embeddings, computes cosine
similarity, selects top phrases, and expands them into readable snippets using
simple heuristics. The final output is a ranked list of profiles paired with
snippets and highlighting metadata.

Reasoning

To improve transparency in search results, we introduced a lightweight
reasoning module that explains how LinkedIn interprets a member’s query.
When a query is submitted, the LLM-based understanding model extracts
facets, classifies intent, and—using predefined guidelines—produces a concise
“thinking state” describing how the query is parsed, along with a brief summary
of the types of profiles retrieved. For unsupported or negatively intended
queries, the module instead provides a clear explanation of why results may be
limited. For example, “berkeley community development specialist msa
professional services” becomes “Searching for community development
specialist at MSA Professional Services affiliated with Berkeley.” To keep latency
low, reasoning outputs are cached in Couchbase and reused for repeated or
semantically similar queries.

SLM ranking model inference efficiency
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We employed multiple techniques to improve efficiency of the inference system
at LinkedIn including:

Model pruning, where we remove Fully Connected Layers and remove
whole transformer layers.

Context pruning, by summarization or embedding compression (paper
on AI modeling techniques for efficiency of SLM inference).

Model pruning

To boost inference throughput, we apply model compression via structured
pruning—a technique that removes redundant components to reduce model size
and computation with minimal quality loss. Because our models run on GPU
infrastructure, we focus on structured pruning, which removes entire neurons,
attention heads, or transformer layers so the resulting model can run efficiently
on standard GPU kernels. This yields real throughput and latency gains, unlike
unstructured pruning, which drops individual weights but often provides no
meaningful speedup without specialized hardware. 

We prune hidden neurons in Multi-layer Perceptron (MLP) blocks and attention
heads in self-attention modules, and we remove full transformer layers to study
trade-offs between size, efficiency, and performance (paper). Pruning MLP
neurons shrinks intermediate activations, while pruning layers reduces network
depth—both producing lighter, faster models. After pruning, we fine-tune the
model to recover any accuracy loss, ensuring efficiency improvements do not
compromise quality.

Context pruning

Item descriptions are long (median ~900 tokens and up to 2,300) making them
over 94% of the SLM prompt and causing ~10% of inputs to be truncated at the
2,048-token limit. Removing descriptions severely degrades relevance quality,
confirming they carry essential semantic information. To handle this, we use a
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slightly larger 1.7B LLM to summarize descriptions offline, where item-specific
inference can be precomputed and refreshed via streaming updates. Because job
descriptions include verbose, often irrelevant details, we train the summarizer
with a semantics-preserving loss and a length-aware reward (paper). We fine-
tune the model using RL to produce concise summaries, balancing (1) reduced
input length and (2) preserved model quality. The reward combines:

a semantic consistency term, measured via KL divergence between the
SLM’s output distributions on summarized vs. raw text, and

a length penalty that discourages overly long summaries.

The weighting factor w controls the trade-off between brevity and fidelity,
enabling summaries that retain meaning while reducing inference cost.

Embedding compression 

Since the computational cost of LLM inference increases quadratically with
input length, reducing the number of tokens can greatly decrease overall
inference expense. On top of model pruning and summarization, we invented a
text–embedding hybrid interaction architecture that condenses each item’s text
into a single-token embedding generated by an encoder LLM (paper). These
embeddings are then merged with other textual signals and passed to a ranker
LLM for relevance estimation. Because the item embeddings are precomputed
and stored in a nearline cache, the volume of text processed during online
inference is significantly reduced, resulting in notable improvements in
efficiency. 

We jointly train the hierarchy of two language models, where one model is
producing embedding of the item description and the other model does the
ranking of the candidates. On the figure below we show we use two 0.6B models
trained jointly. As a result we could replace most of the job description with just
a single embedding. We may keep important raw fields with a limited number of
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text tokens such as title of the job, company name, location or member name in
the input.

Figure 4. Hierarchy of SLMs trained and served in production

Overall modeling quality and throughput
In the table below we show how quality and inference throughput changed as we
improved the modeling technology. As part of the modeling improvement we
introduced multitask learning with over 6 tasks of member actions to the model
output predictions including relevance, and, for example, were able to improve
Click AUC of the model from 0.61 (baseline) to 0.67 for Job Ranking.

 





Setup NDCG@10 Throughput (ITEMS/SEC/GPU)

SLM with raw-text 0.9432 290

Pruned SLM and SUMMARIZED TEXT 0.9218 2200

SLM with EMBEDDING COMPRESSION 0.9239 22000

Embedding based retrieval (EBR) baseline 0.838 >1.6B, exhaustive search on GPU

Looking ahead
We built a modern semantic search system by first establishing an LLM-based
quality evaluation framework grounded in product policy. On top of this
foundation, we introduced LLM-powered query understanding, semantic
retrieval, and ranking models—driving double-digit improvements in search
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quality and member engagement. Just as importantly, we achieved this while
keeping inference costs comparable to traditional RecSys models previously
running in production. As we continue refining Semantic Search, our focus
remains on empowering every member to discover the right opportunity,
connection, or insight—at the right time.
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