/‘ Ievels_fyi Q Search by Company, Title, or City E

Salaries v Jobs Services v Community

ENGINEERING

Levels.fyi's Over-The-Air Mobile Updates

How we keep our mobile app updated everyday

Adithya Viswamithiran
June 4, 2025

| Check out the Levels.fyi app for salaries & more!

When Levels.fyi started out, we were using a simple google sheet as a backend. With time, our scale grew to millions of users. With scale, our

range of offerings has been growing and we have been entering newer territories everyday.

Mobile @ Levels.fyi has had a similar journey as well. The initial Levels.fyi app had little resemblance to our website and was meant to cater to a

niche subset of our overall product—the Levels.fyi community. Over time, we have come to realize that mobile tackles a very important aspect of

our business, which is user stickiness. We have been focusing on continuously improving our mobile app to pass on delight to our users.

Over-the-air updates have played a very important role in our development cycle, helping us push newer features to users without requiring them

to download newer versions of the app from Google Play/Apple Store.

Finding a Codepush alternative

The Levels.fyi app is built using react-native. Until the initial days of February 2025, we were using Microsoft appcenter (and codepush) for error
diagnostics and pushing over-the-app (OTA) updates to our users. With the impeding sunset of appcenter on March 31 2025, we were faced with

the problem of choosing an alternative for OTA.

https://www.levels.fyi/blog/scaling-to-millions-with-google-sheets.html
https://www.levels.fyi/community
https://www.levels.fyi/download?from=navbar
https://www.levels.fyi/blog/
https://www.levels.fyi/jobs?from=subnav
https://www.levels.fyi/community?from=subnav

We initially explored similar managed services for OTA with Expo Application Services (EAS) at the top of the list. Keeping a close eye on spend

sinks is important for a growing startup like Levels.fyi. EAS is a great service, but at the time, it didn't make much sense for us to go with EAS.

EAS would incur a cost at least $350 per month. $350 is ~7% of our ENTIRE spend on AWS currently, and AWS is the biggest spend source for

us. For every additional 10k active users of the Levels.fyi app in a month, our cost would increase by $50. So, spend can snowball pretty quickly.

Self-hosting isn't something new at Levels.fyi. Plausible and PostHog are examples of services we have been self-hosting/have tried self-hosting.
A self-hosted version of the code push server is available as open-source, but the codebases for the server and the OTA react native module
weren't going to be actively maintained post the sunsetting of Microsoft appcenter. Considering maintainability issues, we decided to go ahead

with a self-hosted server implementing the expo updates protocol for OTA updates.

Why go serverless?

A custom server hosted implementation of the expo updates protocol is available as open-source. A simplified chart depicting how the custom

updates server works, is shown below.

Build Machine Expo updates server Client app

4)

bundles Fetch bundles
Generate and " occets . A
u(aloao(bundles and —m——> ana asse ————= oana assetls

stored on from the
assets dick

_ _/

There were reasons as to why we thought serverless was a better option for us considering the following points

server

1. Scalability: The easiest way to scale storage is storing files on a blob storage like S3. It is possible for multiple compute instances to achieve
read/write to a single disk using technologies like Multi-attach. But if additional disks are to be attached, such a setup would require manual

intervention again. We chose S3 as our managed blob storage service to better horizontal scale our storage needs.
2. Caching: Since we use S3 for storage, it is easy to bake in caching by creating a Cloudfront distribution that uses our S3 bucket as an origin.

3. Response Latency: The already available open-source server uses a mechanism to generate an Expo Updates manifest object on-the-fly per
each request. So if we were to use S3 for storage, for every GET/api/manifest request made to the server, the server would need to download
some files from S3 onto the disk and generate an Expo Updates manifest object. This to and fro causes extra latency. We decided to go with
the approach of generating the Expo Updates manifest alongside the bundle generation step (build time). We store the generated Expo
Updates manifest in DynamoDB.

4. Cost per usage: We were not not sure about the load traffic patterns for the OTA server. It made sense for us to go with serverless compute,

which follows a pay-as-you-go billing model. We went with ECS fargate.

IETHERE ARE NO SERVERS

https://github.com/microsoft/code-push-server
https://docs.expo.dev/technical-specs/expo-updates-1/
https://github.com/expo/custom-expo-updates-server

Architecture

. Check out my sample repo https://github.com/adithyavis/serverless-expo-ota-server/

S3

Cloudfront

Route 53

App using
expo

1. On the build machine, the Expo CLI is used to generate the .hbc bundles and the assets for the OTA. The generated bundles and assets are

BEB

(o=]

ELB

@

DynamoDB

®

e m e e ————

— —ECS @

&>

then uploaded to a s3 bucket. Along with this, an Expo Updates manifest JSON file is also generated. This file contains the metadata related to

the update, such as the id of the update, createdAt, URL of the launchAsset, etc. The launchAsset URL directly points to the location of the

.hbc bundles and assets in the s3 bucket.

2. A new entry is added to the DynamoDB table. The partition key of the entry is a composite value consisting of the target platform and the

target runtime version of the OTA update. It is something like android-1.0.0 . The sort key is the update number for the given runtime

version, like 1 or 2 .The Expo Updates manifest object is stringified and is stored in the manifest attribute of the DynamoDB item. The

server can get the Expo Updates manifest from DynamoDB using a Query operation.

Partition

Key
android-

1.0.0

android-
1.0.0

Sort

Key

id

fsfs133-
14fdgds-
13424dbg

fsfs133-
14fdgds-
13424dbg

platform

android

android

manifest

{1

{1

mandatory

true

true

runtimeVersion

1.0.0

1.0.0

otaUpdateVersion

activeDevices

100

1240

eni

tru

tru

https://github.com/adithyavis/serverless-expo-ota-server/

1. The react-native app queries the GET /api/manifest APl endpoint on the server. The server makes a Query operation on the DynamoDB table to

get the Expo Updates manifest object using the partition key and sort key. It prepares a manifest JSON and returns that to the client.

2. If there is a new update available for the react-native app, a fetch call is made and bundles and assets are downloaded through the Cloudfront

distribution pointing to the S3 bucket, without having to reach the server.

Wrapping Up

The sunsetting of AppCenter could have been a major disruption, but it ended up being an opportunity for us to re-evaluate and improve how we

ship updates to our users.

By going the self-hosted, serverless route, we now have an OTA pipeline that's cost-efficient, scalable, and fast. It fits right into our philosophy at
Levels-fyi of owning our infrastructure where it counts, optimizing for performance and flexibility, and keeping a close eye on long-term

maintainability.

As we continue to grow and iterate on our mobile experience, this setup gives us the control we need to keep delivering improvements seamlessly

without waiting on app store release cycles.

4 levels.fyi

Helping people build better careers
©2017-2026

https://www.levels.fyi/
https://www.levels.fyi/

