/‘ [e\[els_fyi Q. Search by Company, Title, or City E

Salaries v Jobs Services v Community

ENGINEERING

How Levels.fyi scaled to millions of users with Google Sheets as a backend

Our philosophy to scaling is simple, avoid premature optimization

Dushyant Sabharwal
February 3, 2023

d-+ &

Update (January 2024): While we continue to use Google Sheets throughout our operations, we now also rely

on a Postgres DB.

Levels.fyi has become the career site for professionals. Our users today span the entire globe and as of now roughly 1-2 million unique users visit
the site every month. We started back in 2017 with a humble vision of helping professionals get paid, not played, and within a couple of years, the

site became a primary resource for US tech professionals looking for jobs, salaries and to get negotiation help.
But, what if | told you that the initial version of the site did not have a backend?

It seems like a pretty counterintuitive idea for a site with our traffic volume to not have a backend or any fancy infrastructure, but our philosophy to

building products has always been, start simple and iterate. This allows us to move fast and focus on what’s important.

http://levels.fyi/
https://www.levels.fyi/jobs
https://www.levels.fyi/t
https://www.levels.fyi/services/?from=blog
https://www.levels.fyi/blog/
https://www.levels.fyi/jobs?from=subnav
https://www.levels.fyi/community?from=subnav

Dushyant S. uee

Engineering Leader
3w

Your globally distributed, multi master cloud SQL database powering 1000 monthly unique
users

v/s

Levels.fyi using Google Sheets as a database &

O®® 1,543 - 25 Comments

Q) Like & comment — Share

August 2024 Update: Describing how Levels.fyi used Google Sheets to scale to millions of users using this viral meme of Yusuf Dikec from the

Olympics.

Why did we start without a backend?

o To focus more on the product/idea fit. Google Forms + Google Sheets allowed us to move fast in releasing the initial version
e Save effort and money on setting up a APl and database server on AWS

* Save effort on operational maintenance of a APl and database server

https://www.linkedin.com/posts/dushyantsabharwal_your-globally-distributed-multi-master-cloud-activity-7224847227465187328-vp5w
https://www.linkedin.com/posts/dushyantsabharwal_your-globally-distributed-multi-master-cloud-activity-7224847227465187328-vp5w
https://www.linkedin.com/posts/dushyantsabharwal_your-globally-distributed-multi-master-cloud-activity-7224847227465187328-vp5w

.\ Zuhayeer Musa X
@zuhayeer - Follow

Levels.fyi had Google Sheets as a DB for a while, and it

was great

Some cool things about it:

- a quick interface to edit / publish
- built in auth permissions

- general familiarity

@ Theo - t3.99 @ @theo
Why not Google Sheets as a database though?

database.sql

database.xIsX

database.ixt

3:10 PM - Jan 29, 2024

@ 77 @ Reply (2 Copylink

Read 3 replies

Through this blog post we will be sharing our strategy and learnings on building a dynamic site without a database and an API server. We hope

this helps you bootstrap your products and ideas faster, as well!

Static vs Dynamic site

Whenever someone thinks about building a dynamic site the first cause of mental fatigue is the backend. The backend is responsible for

processing, storing & delivering the dynamic content. If we take the backend for any site out of the equation then it's mainly a static site.

Building a static site is not super challenging because you don’t have to think about maintaining a server for APIs and a database for data storage.

To build a static site you only need the left part and a dynamic site requires both.

https://twitter.com/zuhayeer?ref_src=twsrc%5Etfw%7Ctwcamp%5Etweetembed%7Ctwterm%5E1752107095493841154%7Ctwgr%5Ea3615ee70010ce9c4c494a36b4c5a4be00658a88%7Ctwcon%5Es1_&ref_url=https%3A%2F%2Fwww.levels.fyi%2Fblog%2Fscaling-to-millions-with-google-sheets.html
https://twitter.com/zuhayeer?ref_src=twsrc%5Etfw%7Ctwcamp%5Etweetembed%7Ctwterm%5E1752107095493841154%7Ctwgr%5Ea3615ee70010ce9c4c494a36b4c5a4be00658a88%7Ctwcon%5Es1_&ref_url=https%3A%2F%2Fwww.levels.fyi%2Fblog%2Fscaling-to-millions-with-google-sheets.html
https://twitter.com/zuhayeer?ref_src=twsrc%5Etfw%7Ctwcamp%5Etweetembed%7Ctwterm%5E1752107095493841154%7Ctwgr%5Ea3615ee70010ce9c4c494a36b4c5a4be00658a88%7Ctwcon%5Es1_&ref_url=https%3A%2F%2Fwww.levels.fyi%2Fblog%2Fscaling-to-millions-with-google-sheets.html
https://twitter.com/intent/follow?ref_src=twsrc%5Etfw%7Ctwcamp%5Etweetembed%7Ctwterm%5E1752107095493841154%7Ctwgr%5Ea3615ee70010ce9c4c494a36b4c5a4be00658a88%7Ctwcon%5Es1_&ref_url=https%3A%2F%2Fwww.levels.fyi%2Fblog%2Fscaling-to-millions-with-google-sheets.html&screen_name=zuhayeer
https://twitter.com/zuhayeer/status/1752107095493841154?ref_src=twsrc%5Etfw%7Ctwcamp%5Etweetembed%7Ctwterm%5E1752107095493841154%7Ctwgr%5Ea3615ee70010ce9c4c494a36b4c5a4be00658a88%7Ctwcon%5Es1_&ref_url=https%3A%2F%2Fwww.levels.fyi%2Fblog%2Fscaling-to-millions-with-google-sheets.html
https://t.co/TCZD6eGIZZ
https://x.com/t3dotgg/status/1751938239508717709/photo/1
https://twitter.com/zuhayeer/status/1752107095493841154?ref_src=twsrc%5Etfw%7Ctwcamp%5Etweetembed%7Ctwterm%5E1752107095493841154%7Ctwgr%5Ea3615ee70010ce9c4c494a36b4c5a4be00658a88%7Ctwcon%5Es1_&ref_url=https%3A%2F%2Fwww.levels.fyi%2Fblog%2Fscaling-to-millions-with-google-sheets.html
https://help.twitter.com/en/twitter-for-websites-ads-info-and-privacy
https://twitter.com/intent/like?ref_src=twsrc%5Etfw%7Ctwcamp%5Etweetembed%7Ctwterm%5E1752107095493841154%7Ctwgr%5Ea3615ee70010ce9c4c494a36b4c5a4be00658a88%7Ctwcon%5Es1_&ref_url=https%3A%2F%2Fwww.levels.fyi%2Fblog%2Fscaling-to-millions-with-google-sheets.html&tweet_id=1752107095493841154
https://twitter.com/intent/tweet?ref_src=twsrc%5Etfw%7Ctwcamp%5Etweetembed%7Ctwterm%5E1752107095493841154%7Ctwgr%5Ea3615ee70010ce9c4c494a36b4c5a4be00658a88%7Ctwcon%5Es1_&ref_url=https%3A%2F%2Fwww.levels.fyi%2Fblog%2Fscaling-to-millions-with-google-sheets.html&in_reply_to=1752107095493841154
https://twitter.com/zuhayeer/status/1752107095493841154?ref_src=twsrc%5Etfw%7Ctwcamp%5Etweetembed%7Ctwterm%5E1752107095493841154%7Ctwgr%5Ea3615ee70010ce9c4c494a36b4c5a4be00658a88%7Ctwcon%5Es1_&ref_url=https%3A%2F%2Fwww.levels.fyi%2Fblog%2Fscaling-to-millions-with-google-sheets.html

CDN — File store + API Server

Our approach
Our secret sauce to do away without a database and a server consisted mainly of:

e Google Forms
e Google Sheets
e AWS Lambda

« AWS API Gateway

/" It may also be worth mentioning that you could start without any AWS stuff. Just that loading from Google

Sheets directly has longer latency and isn’t performant.

The user interface can be replaced by Google Forms. The database can be replaced by Google Sheets. And the API server can be replaced by AWS
API| Gateway + AWS Lambda.

Google Forms, Google Sheets & AP| Gateway are no-code tools and they require zero amount of operational maintenance. It's Google's & AWS's

job to keep them up and running 24x7.

Write Flow
Example: User adds a new salary on the site.
Version 0

VO had no Ul, add salary form was a Google Forms Ul &

Add salary

Levels.fyi Google Form Google Sheet

Version 1

Our own Ul with necessary validations on the frontend

1. Frontend calls publicly visible API Gateway
2. API Gateway triggers and spawns a lambda function

3. Lambda function processes and appends new salary to the sheet

Add salary

Levels.fyi » APl Gateway Salary submission

Lambda

—_— Google Sheet

Read Flow

Our read flows were more complex than write ones since beyond just showing salary data we also had use cases where we would show charts

like below

Salary Range Chart

L3 o
g -

L5 s e

- - ———— -

. -

L8 =

S0 S200K S400K S600K S800K S1M $1.2M S1.4M

Our recipe for building a read flow was as follows:

1. Process data from Google Sheet and create a JSON file
2. Use AWS Lambda for processing and creating new JSON files
3. Upsert JSON files on S3

4. Cache JSON files using a CDN like AWS Cloudfront

Build json files

Fetch salaries

JSON chef Lambda Google Sheet

Update json files

Fetch json files cache miss
CDN —> S3

A A

Levels.fyi

On initial page load the user’s browser downloads all the needed JSON files and any further processing happens in the browser.

Yes, you read that right. In the first few years of Levels.fyi, every single salary (over 100k at some point) were downloaded in a single json. All

graphs, statistics, calculations, etc were done in the browser.

We used the below caching strategy to reduce data transfer for the user.

‘ cache miss cache miss
— 3 CDN —> S3

salaries.json Biéidet

cache /

Levels.fyi

Drawbacks
The above architecture/design worked well for 24 months but as our users and data grew we started running into issues.

1. The size of json files grew to several MBs, every cache miss was a massive penalty for the user and also for the initial page load time
2. Our lambda functions started timing out due to the amount of data that needed to be processed in a single instance of execution

3. We lacked any SQL based data analysis which became problematic to make data driven decisions

4. Google Sheets API rate limiting is pretty strict for write paths. Our writes were scaling past those limits

5. Since our data was downloaded as json files it was easy to scrape and plagiarise

Migration to a new backend
To mitigate the drawbacks we started migrating off of the Google Sheets and AWS lambda functions to databases and API servers.
Our migration goals were:

e Getting rid of all the JSON files

e Using APIs for all read & write paths
Duplicating writes

In order to not break our current functionality dependent on Google Sheets and JSON files, we started duplicating writes to existing Google Sheets

and our new database. This allowed us to start migrating read use cases to APIs

Add salary

Levels.fyi » APl Gateway » Salary submission

Lambda

A Google Sheet

database

Splitting JSON files

Started splitting JSON files into smaller chunks and deprecating each chunk by a new read API

salaries.json
Levels.fyi R A Browser (R CDN ezzzzozizisozzzzeed S3
cache
read APls
CDN —————>» Load Balancer ——m> API Server —_—>

database

Moving all read & write paths to the API

Levels.fyi — CDN —————> Load Balancer @~—m ——> API Server —_—>
database

Conclusion

Google Forms & Sheets allowed us to launch & test ideas in a rapid manner rather than getting lost in setting up bits and pieces of the backend.

After Levels.fyi achieved product market fit and our scale increased it made sense to move to a more robust and scalable backend infrastructure.

Our backend today is more sophisticated but our philosophy to scaling is simple, avoiding premature optimization. Even now, one of our most

trafficked services today still has a single node.js instance serving 60K requests per hour (topic for another blog post).

Engineering Manager on Google Sheets @ Google

Wow, I'll share this w/ the team. It'll make them proud that Sheets
got you folks to this point. Don't worry, we won't hold it against you
that you've decided to move to something more "robust" for your
scale and needs.

Keep up the great product, | know lots of folks are benefitting from
it.

Love - @@ 10 Reply

An engineering manager from the Google Sheets team commented on a LinkedIn post about Levels.fyi utilizing Google Sheets.

Also check out: How Levels.fyi Built Scalable Search with PostgreSQL

http://levels.fyi/
https://www.linkedin.com/posts/zuhayeer_googlesheets-build-salaries-activity-7024114079074045952-ESkX?utm_source=share&utm_medium=member_desktop
https://www.levels.fyi/blog/scalable-search-with-postgres.html

7 levels.fyi

Helping people build better careers
©2017-2026

https://www.levels.fyi/
https://www.levels.fyi/

